CIRPAS Update

Fall ICCAGRA Meeting November 9, 2009

- New Instrument Capabilities
 - Expendables
 - Cloud physics & aerosol probes
- Mobile PAR
 - Tornado observations
- Twin Otter
 - Overhaul
 - Schedule

Micro Air-launched Expendable Wave Buoy + Current (MAXWB+C)

DEVELOPMENT:

- Redesign of the QNA MAXWB
- Used proven wave data collection and processing techniques
- Added GPS for position and current calculation
- Improved sea surface temperature accuracy
- Provided Iridium and barometric pressure expansion capability

OPERATION:

- Expendable sensor (cost < \$2K)
- Deployed from aircraft or ship
- Activated by salt water switch
- Waves data available 10 minutes after deployment
- Processed data transmitted via line of site UHF radio
- Transmission range up to 30 nm (to aircraft)
- Compatible with AVAPS receiver as well as low-cost COTS receiver

RANGE AND ACCURACY:

Wave Height ± 0.25 m, 0.25 to 0.99

± 10%, 1 to 10 m

Dominant/Average Period ± 0.5 s, 1 to 25 s
 Sea Surface Temperature ± 0.2° C, -5° to +40° C

Surface Current ± 0.1 m/s

SPECIFICATIONS:

Transmitter 400-406 MHz (UHF)

AVAPS/PADS/COTS

• Weight 433g

Dimensions
 Operating Temperature Range
 Battery Life
 5.0 x 6.4 x 20.0 cm
 -40°C to 40°C
 > 12 hrs

Proposed Iridium Micro Air-launched Expendable Wave Buoy (iMAXWB)

DEVELOPMENT GOALS:

- Expand MAXWB+C design
- Improve GPS antenna position and function
- Integrate Dual Iridium/GPS antenna
- Provide LOS and Iridium communications
- Conform to NCAR dropsonde form factor
- Extend buoy battery life

OPERATION:

- Expendable sensor (cost < \$3.5K)
- Deployed from aircraft or ship
- Activated by salt water switch
- Waves data available 10 minutes after deployment
- Processed data transmitted via line of site UHF radio and Iridium modem
- Compatible with AVAPS receiver as well as low-cost COTS receiver
- Launch and leave

RANGE AND ACCURACY:

Wave Height ± 0.25 m, 0.25 to 0.99

± 10%, 1 to 10 m

Dominant/Average Period ± 0.5 s, 1 to 25 s
 Sea Surface Temperature ± 0.2° C, -5° to +40° C

Surface Current ± 0.1 m/s

SPECIFICATIONS:

Transmitter
 400-406 MHz (UHF)

Iridium 9601 SBD Modem

• Weight 433g

Dimensions
 Operating Temperature Range
 Battery Life
 5.0 x 6.4 x 20.0 cm
 -40°C to 40°C
 > 7 days

Next-Gen Automated Dropsonde System w/ SATCOM

Design Challenge:

- Automated dispensing
- Launch every 10 seconds
- Track 40 sondes simultaneously
- Communicate data via satellite
- SST option
- Multiple form factors

Cloud Droplet Probe (CDP)

- Measures cloud particles in the 2 50 μm range
- Particle-sizing and concentration histograms
- Light source: 660 nm, 50 mW diode laser
- Concentration range: 0 5,000 particles/cm³
- Airspeed range 10 200 m/sec, altitude limit 50,000 ft

Photoacoustic Soot and Aerosol Sensor, Three Wavelength (PASS-3)

- Direct measurement of aerosol light absorption and scattering
- In situ measurement without filters, autonomous operation
- 405, 532 and 781 nm laser wavelengths, simultaneous measurement
- Scattering measurement responds to all particle types
- · Real-time readout of aerosol mass loading

Single Particle Soot Spectrometer (SP2)

- Only probe in the world that directly measures black carbon (soot) in individual aerosol particles
- Single-particle scattering of non-absorbing particles
- Two-color incandescence measurement of individual light-absorbing particles
- Direct measurement of black carbon mass; spherical equivalent diameter derived from mass

Ultra-High Sensitivity Aerosol Spectrometer, Airborne (UHSAS-A)

- Measures aerosols in the 60 nm to 1 μm range
- Maximum count rate: 3000 particles/sec
- 100-bin resolution
- Sample flow rate: 10-100 cc/min
- Data sampling rate: up to 10 Hz

Artium Technologies, Inc. Phase Doppler Interferometer (PDI) Extended Range Flight Probe, PDI ExR FP

MWR-05XP Mobile Weather Radar, operational use from 2005, X-band, Phased Array

Radar Control GUI Software

Written in clientserver configuration allowing for full control and operation from a remote location – anywhere on Internet

Real Time PPI and RHI Display of Calibrated Reflectivity and Velocity

MWR-05XP radar parameters	Signal-to-Noise ratio		Velocity error
Transmitted pulse width	1 ms	0 dB	2.4 m/s
Pulse Repetition Period	400 ms	10 dB	0.637 m/s
Integration time	9 ms	20 dB	0.197 m/s
Number of Samples	10	30 dB	0.062 m/s

Valocity Variance

Parameter Value

Transmitted frequency

PRF

Transmitted pulse width

Antenna type

Transmit power

Azimuth BW

Mechanical Azimuth Scan

Electronic Azimuth Back-Scanning

Elevation BW

Elevation Scan

Range Resolution

Range Sampling Interval

Sensitivity

X-Band

15.13 kW (peak) 240 W (average)

10 kHz (max)

1 μs

Mechanically rotated electronically scanned phased array

1.8°

360°. 30 RPM

3 ° to 12 °

2.0°

-18° to 55° relative to the horizon

150 m

75 m

~ -15 dBZ@10 km

Scanning Strategies

First mobile electronically scanned phased array weather radar

(...still the fastest ...)

MWR-05XP capabilities critical for rapid scanning:

- •Rapid mechanical scanning in azimuth (up to 180 degrees per second)
- •Electronic (fast) scanning
 - ➤ Pulse-to-pulse electronic scanning in elevation
 - \succ Limited (<12 $^{\circ}$) pulse to pulse back-scanning in azimuth
 - ✓ Eliminates beam smearing in azimuth

STF-SP STEPPED FREQUENCY STEPPED SPIRAL

Similar scan to WSR-88D but faster

- 1. Two pulses pre dwell
- 2. CW rotation covering full 360° azimuth @ 180° per second
- 3. 10 step frequency hopping [azimuth back-scanning]
- 4. Step in elevation after completing full 360° scan
 - ✓ Reflectivity
 - ✓ Pulse pair velocity

STF-SE STEPPED FREQUENCY ELEVATION SCAN

- Two pulses pre dwell
- Electronic step scanning in elevation
- 10 step frequency hopping
- CW or CCW rotation covering desired sector in azimuth
 - Reflectivity
 - Pulse pair velocity

RAS-SP RASTER SCAN

- Multiple (up to 256) pulses pre dwell
- Electronic step scanning in elevation
- Electronic step scanning in azimuth
 - limited to maximum 80 sector
 - or
- CW or CCW rotation covering desired sector in azimuth
 - Doppler spectra

- Frequency Agility
 - >"Frequency Hopping"
 - ✓ Provides independent samples within de-correlation time of the weather target

SCANNING MODES

Typical volume scan parameters:

- Azimuth
- sector:3600
- step: 1.62⁰
- Elevation
 - sector: 00 to 200
 - step: 1.67⁰
- Antenna rotation speed: 180º/s
- Volume scan rate: 24 seconds
- Typical volume scan parameters:
- Azimuth
 - sector: 900step: 1.620
- Step: 1.620
 - sector: 00 to 200
 - step: 1.670
- Antenna rotation speed: 150 /s
- Volume scan rate: 6 seconds
- Typical volume scan parameters:
- Azimuth sector: 350
- Elevation sector: 00 to 550
- Hits per dwell: 64Dwell time: 16.1 ms
- Antenna rotation speed: 2.340 /s
- Volume scan rate: 15 seconds

2.5°, Z, 2219:19 UTC MWR-05XP 2.3°, Z, 2219:00 UTC UMASS X-POL

2219:19 UTC, 5 JUNE 2009 GOSHEN COUNTY, WY

0205:58

5 JUNE 2009 GOSHEN COUNTY, WY

MOTIVATION FOR RAPID-SCAN RADARS

- ADVECTIVE TIME SCALE FOR TORNADOES ~ 2π r_{c}/V ~ 2π (100 m)/60 m s $^{-1}$ ~ 10 s
- SUPERCELL UPDRAFTS \sim 50 m s $^{\circ}$ ADVECT VORTICITY, CLOUD PARTICLES, & SMALL HYDROMETEORS UPWARD \sim 5 km (\sim HALF THE DEPTH OF THE PARENT STORM) IN \sim 100 s: TO FOLLOW EVOLUTION IN THE VERTICAL MUST VIEW STORM EVERY \sim 10 s
- SIMILARLY FOR DOWNDRAFTS (AND DESCENDING REFLECTIVITY CORES), BUT DOWNDRAFTS MAY BE WEAKER

OTHER RAPID-SCAN RADARS

• NWRT PAR (NORMAN) S-BAND ELECTRONICALLY SCANNING

(FIXED-SITE) 1.5 - 2° BEAM

• RAPID DOW (CSWR) X-BAND HYBRID ELECTRONIC - MECHANICALLY

SCANNING (MOBILE) ~1° BEAM

RAPID X-POL (OU/PROSENSING; UNDER CONSTRUCTION) X-BAND,
 POLARIMETRIC, MECHANICALLY SCANNING

(MOBILE) ~1° BEAM

Twin Otter "D" Check

Includes but is not limited to the following:

- internal structures otherwise inaccessible for corrosion and/ or stress fractures
- overhaul of life limited hydraulic components
- overhaul of life limited electrical components
- overhaul of airframe components, landing gear
- payload electrical system re-worked and improved while the wings are removed
- tail removed for mandatory corrosion inspections
- structural modifications to extend the life of the wing box structure.
- engine change is also being performed

Twin Otter Schedule 2010

(as of 10/21/09)

January

February

March

April

May

June

July

August

September

October

November

December

1

8

15

22

29

Federal holiday:

Weekend:

Integration:

TBD

Ferry flight:

Projects:

Albrecht - BACEX (confirmed)

Seinfeld - CalNex (confirmed)

Melville - HiRes (confirmed)